Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(4): e0297638, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38573933

RESUMO

Beedi is the most common smoking form of tobacco used in India. The rolling of beedis is performed primarily by women in settings that lack occupational safeguards. The aims of this protocol are to establish methods for the study of occupational exposures among women beedi workers and their experiences and challenges working with unburnt tobacco. This protocol employs a convergent parallel mixed-methods approach. Qualitatively, we plan to explore the experiences and challenges faced by women beedi workers using photovoice, a community based participatory method. Occupational exposures to pesticides will be assessed through the use of silicone wristbands worn for seven days by workers, and exposure to toxic metals and metalloids will be assessed in dust samples collected in the homes of workers. The outcomes will be analyzed to form policy recommendations to improve the occupational health of women beedi workers.


Assuntos
Exposição Ocupacional , Praguicidas , Humanos , Feminino , Exposição Ocupacional/análise , Nicotiana , Fumar , Índia
2.
Sci Total Environ ; 928: 172316, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38593875

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are fluorinated organic compounds used in a variety of consumer products and industrial applications that persist in the environment, bioaccumulate in biological tissues, and can have adverse effects on human health, especially in vulnerable populations. In this study, we focused on PFAS exposures in residents of senior care facilities. To investigate relationships between indoor, personal, and internal PFAS exposures, we analyzed 19 PFAS in matched samples of dust collected from the residents' bedrooms, and wristbands and serum collected from the residents. The median ∑PFAS concentrations (the sum of all PFAS detected in the samples) measured in dust, wristbands, and serum were 120 ng/g, 0.05 ng/g, and 4.0 ng/mL, respectively. The most abundant compounds in serum were linear- and branched-perfluorooctane sulfonic acid (L-PFOS and B-PFOS, respectively) at medians of 1.7 ng/mL and 0.83 ng/mL, respectively, followed by the linear perfluorooctanoic acid (L-PFOA) found at a median concentration of 0.59 ng/mL. Overall, these three PFAS comprised 80 % of the serum ∑PFAS concentrations. A similar pattern was observed in dust with L-PFOS and L-PFOA found as the most abundant PFAS (median concentrations of 13 and 7.8 ng/g, respectively), with the overall contribution of 50 % to the ∑PFAS concentration. Only L-PFOA was found in wristbands at a median concentration of 0.02 ng/g. Significant correlations were found between the concentrations of several PFAS in dust and serum, and in dust and wristbands, suggesting that the indoor environment could be a significant contributor to the personal and internal PFAS exposures in seniors. Our findings demonstrate that residents of assisted living facilities are widely exposed to PFAS, with several PFAS found in blood of each study participant and in the assisted living environment.


Assuntos
Exposição Ambiental , Fluorocarbonos , Fluorocarbonos/análise , Fluorocarbonos/sangue , Humanos , Idoso , Exposição Ambiental/estatística & dados numéricos , Exposição Ambiental/análise , Poeira/análise , Poluentes Ambientais/sangue , Poluentes Ambientais/análise , Monitoramento Ambiental , Feminino , Masculino , Ácidos Alcanossulfônicos/sangue , Ácidos Alcanossulfônicos/análise , Idoso de 80 Anos ou mais , Caprilatos/sangue , Caprilatos/análise , Instituição de Longa Permanência para Idosos/estatística & dados numéricos
3.
Environ Sci Technol ; 57(42): 15782-15793, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37818968

RESUMO

Per- and polyfluoroalkyl substances (PFAS) make up a large group of fluorinated organic compounds extensively used in consumer products and industrial applications. Perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), the two perfluoroalkyl acids (PFAAs) with 8 carbons in their structure, have been phased out on a global scale because of their high environmental persistence and toxicity. As a result, shorter-chain PFAAs with less than 8 carbons in their structure are being used as their replacements and are now widely detected in the environment, raising concerns about their effects on human health. In this study, 47 PFAAs and their precursors were measured in paired samples of dust and drinking water collected from residential homes in Indiana, United States, and in blood and urine samples collected from the residents of these homes. Ultrashort- (with 2 or 3 carbons [C2-C3]) and short-chain (with 4-7 carbons [C4-C7]) PFAAs were the most abundant in all four matrices and constituted on average 69-100% of the total PFAA concentrations. Specifically, trifluoroacetic acid (TFA, C2) and perfluoropropanoic acid (PFPrA, C3) were the predominant PFAAs in most of the samples. Significant positive correlations (n = 81; r = 0.23-0.42; p < 0.05) were found between TFA, perfluorobutanoic acid (PFBA, C4), and perfluoroheptanoic acid (PFHpA, C7) concentrations in dust or water and those in serum, suggesting dust ingestion and/or drinking water consumption as important exposure pathways for these compounds. This study demonstrates that ultrashort- and short-chain PFAAs are now abundant in the indoor environment and in humans and warrants further research on potential adverse health effects of these exposures.


Assuntos
Ácidos Alcanossulfônicos , Água Potável , Fluorocarbonos , Poluentes Químicos da Água , Humanos , Poluentes Químicos da Água/análise , Fluorocarbonos/análise , Água Potável/química , Poeira
4.
Environ Int ; 177: 108021, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37307605

RESUMO

Quaternary ammonium compounds (QACs) are a class of surfactants commonly used in disinfecting and cleaning products. Their use has substantially increased during the COVID-19 pandemic leading to increasing human exposure. QACs have been associated with hypersensitivity reactions and an increased risk of asthma. This study introduces the first identification, characterization and semi-quantification of QACs in European indoor dust using ion-mobility high-resolution mass spectrometry (IM-HRMS), including the acquisition of collision cross section values (DTCCSN2) for targeted and suspect QACs. A total of 46 indoor dust samples collected in Belgium were analyzed using target and suspect screening. Targeted QACs (n = 21) were detected with detection frequencies ranging between 4.2 and 100 %, while 15 QACs showed detection frequencies > 90 %. Semi-quantified concentrations of individual QACs showed a maximum of 32.23 µg/g with a median ∑QAC concentration of 13.05 µg/g and allowed the calculation of Estimated Daily Intakes for adults and toddlers. Most abundant QACs matched the patterns reported in indoor dust collected in the United States. Suspect screening allowed the identification of 17 additional QACs. A dialkyl dimethyl ammonium compound with mixed chain lengths (C16:C18) was characterized as a major QAC homologue with a maximum semi-quantified concentration of 24.90 µg/g. The high detection frequencies and structural variabilities observed call for more European studies on potential human exposure to these compounds. For all targeted QACs, drift tube IM-HRMS derived collision cross section values (DTCCSN2) are reported. Reference DTCCSN2 values allowed the characterization of CCS-m/z trendlines for each of the targeted QAC classes. Experimental CCS-m/z ratios of suspect QACs were compared with the CCS-m/z trendlines. The alignment between the two datasets served as an additional confirmation of the assigned suspect QACs. The use of the 4bit multiplexing acquisition mode with consecutive high-resolution demultiplexing confirmed the presence of isomers for two of the suspect QACs.


Assuntos
COVID-19 , Compostos de Amônio Quaternário , Humanos , Compostos de Amônio Quaternário/análise , Poeira , Pandemias , Espectrometria de Massas/métodos
5.
Environ Pollut ; 334: 122028, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37315884

RESUMO

Brominated flame retardants (BFRs) are a class of compounds with many persistent, toxic, and bioaccumulative members. BFRs have been widely detected in breast milk, posing health risks for breastfeeding infants. Ten years after the phaseout of polybrominated diphenyl ethers (PBDEs) in the United States, we analyzed breast milk from 50 U.S. mothers for a suite of BFRs to assess current exposures to BFRs and the impact of changing use patterns on levels of PBDEs and current-use compounds in breast milk. Compounds analyzed included 37 PBDEs, 18 bromophenols, and 11 other BFRs. A total of 25 BFRs were detected, including 9 PBDEs, 8 bromophenols, and 8 other BFRs. PBDEs were found in every sample but at concentrations considerably lower than in previous North American samples, with a median ∑PBDE concentration (sum of 9 detected PBDEs) of 15.0 ng/g lipid (range 1.46-1170 ng/g lipid). Analysis of time trends in PBDE concentrations in North American breast milk indicated a significant decline since 2002, with a halving time for ∑PBDE concentrations of 12.2 years; comparison with previous samples from the northwest U.S region showed a 70% decline in median levels. Bromophenols were detected in 88% of samples with a median ∑12bromophenol concentration (sum of 12 detected bromophenols) of 0.996 ng/g lipid and reaching up to 71.1 ng/g lipid. Other BFRs were infrequently detected but concentrations reached up to 278 ng/g lipid. These results represent the first measurement of bromophenols and other replacement flame retardants in breast milk from U.S. mothers. In addition, these results provide data on current PBDE contamination in human milk, as PBDEs were last measured in U.S. breast milk ten years ago. The presence of phased-out PBDEs, bromophenols, and other current-use flame retardants in breast milk reflects ongoing prenatal exposure and increased risk for adverse impacts on infant development.


Assuntos
Retardadores de Chama , Hidrocarbonetos Bromados , Lactente , Feminino , Criança , Humanos , Leite Humano/química , Éteres Difenil Halogenados/análise , Retardadores de Chama/análise , Noroeste dos Estados Unidos , Lipídeos , Monitoramento Ambiental/métodos , Hidrocarbonetos Bromados/análise
6.
Environ Sci Technol ; 57(20): 7645-7665, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37157132

RESUMO

Quaternary ammonium compounds (QACs), a large class of chemicals that includes high production volume substances, have been used for decades as antimicrobials, preservatives, and antistatic agents and for other functions in cleaning, disinfecting, personal care products, and durable consumer goods. QAC use has accelerated in response to the COVID-19 pandemic and the banning of 19 antimicrobials from several personal care products by the US Food and Drug Administration in 2016. Studies conducted before and after the onset of the pandemic indicate increased human exposure to QACs. Environmental releases of these chemicals have also increased. Emerging information on adverse environmental and human health impacts of QACs is motivating a reconsideration of the risks and benefits across the life cycle of their production, use, and disposal. This work presents a critical review of the literature and scientific perspective developed by a multidisciplinary, multi-institutional team of authors from academia, governmental, and nonprofit organizations. The review evaluates currently available information on the ecological and human health profile of QACs and identifies multiple areas of potential concern. Adverse ecological effects include acute and chronic toxicity to susceptible aquatic organisms, with concentrations of some QACs approaching levels of concern. Suspected or known adverse health outcomes include dermal and respiratory effects, developmental and reproductive toxicity, disruption of metabolic function such as lipid homeostasis, and impairment of mitochondrial function. QACs' role in antimicrobial resistance has also been demonstrated. In the US regulatory system, how a QAC is managed depends on how it is used, for example in pesticides or personal care products. This can result in the same QACs receiving different degrees of scrutiny depending on the use and the agency regulating it. Further, the US Environmental Protection Agency's current method of grouping QACs based on structure, first proposed in 1988, is insufficient to address the wide range of QAC chemistries, potential toxicities, and exposure scenarios. Consequently, exposures to common mixtures of QACs and from multiple sources remain largely unassessed. Some restrictions on the use of QACs have been implemented in the US and elsewhere, primarily focused on personal care products. Assessing the risks posed by QACs is hampered by their vast structural diversity and a lack of quantitative data on exposure and toxicity for the majority of these compounds. This review identifies important data gaps and provides research and policy recommendations for preserving the utility of QAC chemistries while also seeking to limit adverse environmental and human health effects.


Assuntos
COVID-19 , Desinfetantes , Humanos , Compostos de Amônio Quaternário/química , Pandemias , Antibacterianos
7.
Environ Pollut ; 305: 119246, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35367506

RESUMO

Per- and polyfluoroalkyl substances (PFAS) have become a target of rigorous scientific research due to their ubiquitous nature and adverse health effects. However, there are still gaps in knowledge about their environmental fate and health implications. More attention is needed for remote locations with source exposures. This study focuses on assessing PFAS exposure in Gustavus, a small Alaska community, located near a significant PFAS source from airport operations and fire training sites. Residential water (n = 25) and serum (n = 40) samples were collected from Gustavus residents and analyzed for 39 PFAS compounds. In addition, two water samples were collected from the previously identified PFAS source near the community. Fourteen distinct PFAS were detected in Gustavus water samples, including 6 perfluorinated carboxylic acids (PFCAs), 7 perfluorosulfonic acids (PFSAs), and 1 fluorotelomer sulfonate (FTS). ΣPFAS concentrations in residential drinking water ranged from not detected to 120 ng/L. High ΣPFAS levels were detected in two source samples collected from the Gustavus Department of Transportation (14,600 ng/L) and the Gustavus Airport (228 ng/L), confirming these two locations as a nearby major source of PFAS contamination. Seventeen PFAS were detected in serum and ΣPFAS concentrations ranged from 0.0170 to 13.1 ng/mL (median 0.0823 ng/mL). Perfluorooctanesulfonic acid (PFOS) and perfluorohexanesulfonic acid (PFHxS) were the most abundant PFAS in both water and serum samples and comprised up to 70% of ΣPFAS concentrations in these samples. Spearman's correlation analysis revealed PFAS concentrations in water and sera were significantly and positively correlated (r = 0.495; p = 0.0192). Our results confirm a presence of a significant PFAS source near Gustavus, Alaska and suggest that contaminated drinking water from private wells contributes to the overall PFAS body burden in Gustavus residents.


Assuntos
Ácidos Alcanossulfônicos , Água Potável , Fluorocarbonos , Poluentes Químicos da Água , Alaska , Ácidos Alcanossulfônicos/análise , Água Potável/análise , Fluorocarbonos/análise , Humanos , Projetos Piloto , Poluentes Químicos da Água/análise
8.
J Expo Sci Environ Epidemiol ; 32(5): 682-688, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35437305

RESUMO

BACKGROUND: Quaternary ammonium compounds (QACs), commonly used in cleaning, disinfecting, and personal care products, have recently gained worldwide attention due to the massive use of disinfectants during the COVID-19 pandemic. However, despite extensive use of these chemicals, no studies have focused on the analysis of QACs in human milk, a major route of exposure for infants. OBJECTIVE: Our objectives were to identify and measure QACs in breast milk and evaluate early-life exposure to this group of compounds for nursing infants. METHODS: Eighteen QACs, including 6 benzylalkyldimethyl ammonium compounds (BACs, with alkyl chain lengths of C8-C18), 6 dialkyldimethyl ammonium compounds (DDACs, C8-C18), and 6 alkyltrimethyl ammonium compounds (ATMACs, C8-C18), were measured in breast milk samples collected from U.S. mothers. Daily lactational intake was estimated based on the determined concentrations for 0-12 month old nursing infants. RESULTS: Thirteen of the 18 QACs were detected in breast milk and 7 of them were found in more than half of the samples. The total QAC concentrations (ΣQAC) ranged from 0.33 to 7.4 ng/mL (median 1.5 ng/mL). The most abundant QAC was C14-BAC with a median concentration of 0.45 ng/mL. The highest median ΣQAC estimated daily intake (EDI) was determined for <1-month old infants based on the average (using the median concentration) and high (using the 95th percentile concentration) exposure scenarios (230 and 750 ng/kg body weight/day, respectively). SIGNIFICANCE: Our findings provide the first evidence of the detection of several QACs in breast milk and identify breastfeeding as an exposure pathway to QACs for nursing infants. IMPACT STATEMENT: Our findings provide the first evidence of QAC occurrence in breast milk and identify breastfeeding as one of the exposure pathways to QACs for nursing infants.


Assuntos
Compostos de Amônio , COVID-19 , Desinfetantes , Desinfetantes/análise , Feminino , Humanos , Lactente , Recém-Nascido , Leite Humano/química , Pandemias , Compostos de Amônio Quaternário/análise , Compostos de Amônio Quaternário/química
9.
Sci Total Environ ; 826: 154067, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35217049

RESUMO

Environmental pollution causes adverse health effects in many organisms and contributes to health disparities for Arctic communities that depend on subsistence foods, including the Yupik residents of Sivuqaq (St. Lawrence Island), Alaska. Sivuqaq's proximity to Russia made it a strategic location for U.S. military defense sites during the Cold War. Two radar surveillance stations were installed on Sivuqaq, including at the Northeast Cape. High levels of persistent organic pollutants and toxic metals continue to leach from the Northeast Cape formerly used defense (FUD) site despite remediation efforts. We quantified total mercury (Hg) and polychlorinated biphenyl (PCB) concentrations, and carbon and nitrogen stable isotope signatures, in skin and muscle samples from Dolly Varden (Salvelinus malma), an important subsistence species. We found that Hg and PCB concentrations significantly differed across locations, with the highest concentrations found in fish collected near the FUD site. We found that 89% of fish collected from near the FUD site had Hg concentrations that exceeded the U.S. Environmental Protection Agency's (EPA) unlimited Hg-contaminated fish consumption screening level for subsistence fishers (0.049 µg/g). All fish sampled near the FUD site exceeded the EPA's PCB guidelines for cancer risk for unrestricted human consumption (0.0015 µg/g ww). Both Hg and PCB concentrations had a significant negative correlation with δ13C when sites receiving input from the FUD site were included in the analysis, but these relationships were insignificant when input sites were excluded. δ15N had a significant negative correlation with Hg concentration, but not with PCB concentration. These results suggest that the Northeast Cape FUD site remains a point source of Hg and PCB pollution and contributes to higher concentrations in resident fish, including subsistence species. Moreover, elevated Hg and PCB levels in fish near the FUD site may pose a health risk for Sivuqaq residents.


Assuntos
Mercúrio , Bifenilos Policlorados , Poluentes Químicos da Água , Alaska , Animais , Monitoramento Ambiental , Mercúrio/análise , Bifenilos Policlorados/análise , Truta , Poluentes Químicos da Água/análise
10.
Environ Int ; 158: 106943, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34717176

RESUMO

2,4,6-Tribromophenol (2,4,6-TBP) is a brominated flame retardant that accumulates in human tissues and is a potential toxicant. Previous studies found 2,4,6-TBP levels in human tissues were significantly higher than those of brominated flame retardants measured in the same samples. In contrast, the levels of 2,4,6-TBP in the environment and foodstuff are not elevated, suggesting a low potential for direct intake through environmental exposure or diet. Here, we hypothesized that high levels of 2,4,6-TBP in human tissues are partially from the indirect exposure sources, such as biotransformation of highly brominated substances. We conducted in vitro assays utilizing human and rat liver microsomes to compare the biotransformation rates of four highly brominated flame retardants, which could potentially transform to 2,4,6-TBP, including decabromodiphenyl ethane (DBDPE), 2,4,6-tris-(2,4,6-tribromophenoxy)-1,3,5-triazine (TTBP-TAZ), 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), and tetrabromobisphenol A (TBBPA). Our results show that TTBP-TAZ rapidly metabolizes in both human and rat liver microsomes with a half-life of 1.1 and 2.2 h, respectively, suggesting that TTBP-TAZ is a potential precursor of 2,4,6-TBP. In contrast, 2,4,6-TBP was not formed as a result of biotransformation of TBBPA, BTBPE, and DBDPE in both human and rat liver microsomes. We applied suspect and target screening to explore the metabolic pathways of TTBP-TAZ and identified 2,4,6-TBP as a major metabolite of TTBP-TAZ accounting for 87% of all formed metabolites. These in vitro results were further tested by an in vivo experiment in which 2,4,6-TBP was detected in the rat blood and liver at concentrations of 270 ± 110 and 50 ± 14 µg/g lipid weight, respectively, after being exposed to 250 mg/kg body weight/day of TTBP-TAZ for a week. The hepatic mRNA expression demonstrated that TTBP-TAZ significantly activates the aryl hydrocarbon receptor (AhR) and promotes fatty degeneration (18 and 28-fold change compared to control, respectively) in rats.


Assuntos
Retardadores de Chama , Animais , Biotransformação , Monitoramento Ambiental , Retardadores de Chama/análise , Retardadores de Chama/toxicidade , Éteres Difenil Halogenados/toxicidade , Humanos , Hidrocarbonetos Bromados , Fenóis , Ratos , Triazinas/análise , Triazinas/toxicidade
11.
Environ Sci Technol ; 55(21): 14689-14698, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34662096

RESUMO

Quaternary ammonium compounds (QACs) are commonly used in a variety of consumer, pharmaceutical, and medical products. In this study, bioaccumulation potentials of 18 QACs with alkyl chain lengths of C8-C18 were determined in the in vitro-in vivo extrapolation (IVIVE) model using the results of human hepatic metabolism and serum protein binding experiments. The slowest in vivo clearance rates were estimated for C12-QACs, suggesting that these compounds may preferentially build up in blood. The bioaccumulation of QACs was further confirmed by the analysis of human blood (sera) samples (n = 222). Fifteen out of the 18 targeted QACs were detected in blood with the ΣQAC concentrations reaching up to 68.6 ng/mL. The blood samples were collected during two distinct time periods: before the outbreak of the COVID-19 pandemic (2019; n = 111) and during the pandemic (2020, n = 111). The ΣQAC concentrations were significantly higher in samples collected during the pandemic (median 6.04 ng/mL) than in those collected before (median 3.41 ng/mL). This is the first comprehensive study on the bioaccumulation and biomonitoring of the three major QAC groups and our results provide valuable information for future epidemiological, toxicological, and risk assessment studies targeting these chemicals.


Assuntos
COVID-19 , Desinfetantes , Bioacumulação , Humanos , Pandemias , Compostos de Amônio Quaternário , SARS-CoV-2
12.
Environ Sci Technol ; 55(11): 7510-7520, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33982557

RESUMO

This is the first study in the last 15 years to analyze per- and polyfluoroalkyl substances (PFAS) in breast milk collected from mothers (n = 50) in the United States, and our findings indicate that both legacy and current-use PFAS now contaminate breast milk, exposing nursing infants. Breast milk was analyzed for 39 PFAS, including 9 short-chain and 30 long-chain compounds, and 16 of these PFAS were detected in 4-100% of the samples. The ∑PFAS concentration in breast milk ranged from 52.0 to 1850 pg/mL with a median concentration of 121 pg/mL. Perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) were the most abundant PFAS in these samples (medians 30.4 and 13.9 pg/mL, respectively). Two short-chain PFAS, including perfluoro-n-hexanoic acid (PFHxA, C6) and perfluoro-n-heptanoic acid (PFHpA, C7), were detected in most of the samples with median concentrations of 9.69 and 6.10 pg/mL, respectively. Analysis of the available breast milk PFAS data from around the world over the period of 1996-2019 showed that while the levels of the phased-out PFOS and PFOA have been declining with halving times of 8.1 and 17 years, respectively, the detection frequencies of current-use short-chain PFAS have been increasing with a doubling time of 4.1 years.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Ácidos Alcanossulfônicos/análise , Feminino , Fluorocarbonos/análise , Humanos , Leite Humano/química , Estados Unidos
13.
Environ Sci Technol ; 55(6): 3539-3548, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33616389

RESUMO

There is very little information on the gas-particle partition and spatial and seasonal variations of current-use pesticides (CUPs) in the Great Lakes basin. The atmospheric concentrations of 36 CUPs were measured in 24 h gas and particle samples collected in 2017 at six sites in the Great Lakes basin. Thirteen individual CUPs were detected at least once in both gas- and particle-phase samples, with chlorothalonil, trifluralin, metolachlor, λ-cyhalothrin, cypermethrin, and chlorpyrifos detected in >50% samples. The gas-particle partitioning analysis suggests that gas-phase chemicals like trifluralin and chlorpyrifos were not influenced by either temperature or relative humidity while particle-phase chemicals like metolachlor were marginally and negatively correlated with relative humidity. Median total CUP concentrations were 339, 238, 84, 33, 60, and 6.0 pg/m3 at Chicago, Cleveland, Sturgeon Point, Point Petre, Sleeping Bear Dunes, and Eagle Harbor, respectively. The concentrations of total CUPs and most individual CUPs were generally higher at the urban sites of Chicago and Cleveland than at the rural/remote sites of Sturgeon Point, Point Petre, Sleeping Bear Dunes, and Eagle Harbor. Chlorothalonil, trifluralin, bifenthrin, and chlorpyrifos were the most abundant individual CUPs among fungicides, herbicides, pyrethroid insecticides, and other insecticides, respectively. The spatio-seasonal variation suggests that fungicides at Sturgeon Point and Sleeping Bear Dunes, with the highest fraction of agricultural land use, were associated with agricultural activities, while pyrethroid insecticides were generally driven by human activities.


Assuntos
Poluentes Atmosféricos , Praguicidas , Poluentes Atmosféricos/análise , Chicago , Monitoramento Ambiental , Humanos , Lagos , Praguicidas/análise , Estações do Ano
14.
Sci Total Environ ; 753: 141849, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33207463

RESUMO

We define here "temporal environmental hysteresis" as the time lag between when a pollutant's input to the environment stops and when its concentration in the environment drops to some desired fraction of its maximum concentration. The goal of this paper is to investigate temporal environmental hysteresis for polybrominated diphenyl ethers (PBDEs), which were widely used as flame retardants in consumer goods. These compounds were taken off the North American market in two steps: At the end of 2004, the so-called Penta-BDE and Octa-BDE products were withdrawn, and at the end of 2013, the Deca-BDE product was also discontinued. We focus here on PBDE concentrations in about 700 atmospheric samples collected every 12 days from 2005 to 2018 (inclusive) at two urban sites: Chicago, Illinois, and Cleveland, Ohio. In Chicago, the concentrations of BDE-47 and 99 decreased by a factor of two every 5.9 ±â€¯0.9 and 8.0 ±â€¯1.4 years, respectively, but the concentrations of BDE-209 doubled every 7.6 ±â€¯1.8 years. In Cleveland, the concentrations of BDE-47 and 99 decreased by a factor of two every 5.1 ±â€¯0.4 and 5.7 ±â€¯0.5 years, respectively, and the concentrations of BDE-209 decreased by a factor of two every 9.2 ±â€¯1.6 years. The delay in all these environmental responses relative to when these compounds were removed from the market is a result of decadal scale environmental hysteresis.

15.
Sci Total Environ ; 761: 143240, 2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33243501

RESUMO

The present study characterized source profiles of polycyclic aromatic hydrocarbons (PAHs) for the Great Lakes atmosphere using nine PAH diagnostic ratios (DRs). The samples were collected from six sites in the Great Lakes basin during 1996-2018 within the Integrated Atmospheric Deposition Network (IADN). In general, pyrogenic sources, including coal combustion and vehicular emissions, were the most important contributors to atmospheric profiles, in particular at the urban sites. Diesel emissions accounted for a larger portion of the traffic-originated PAHs than gasoline emissions at all sites, but this compositional pattern was less obvious at the urban sites. Temporal analyses for DRs revealed that the relative contribution of petrogenic sources and volatilization from surfaces has been increasing gradually, and that the gaps in PAH emissions between diesel- and gasoline-engines appeared to be further amplified in recent years. Coal combustion and non-pyrogenic emissions were the main PAH sources for winter and summer air, respectively, but none of the DRs responded to these changes. DRs were generally different between vapor and particle phases. Our findings shed light on spatial and temporal trends of PAH DRs and PAH source characterization in the Great Lakes basin. Additionally, this study confirmed the usefulness of DRs, especially when combined with the PMF analysis, while also highlighting the limitation of multiple DRs.

16.
Sci Total Environ ; 737: 140222, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32783844

RESUMO

In the present study we examined spatial and seasonal trends in the levels of a wide suite of semi-volatile organic compounds (SVOCs) in brown trout (Salmo trutta) and mottled sculpin (Cottus bairdii) in East Canyon Creek, Utah, USA, an effluent-dominated stream during summer months. Fish samples were collected from four sampling sites, including one reference site upstream, and three sites at incremental distances downstream of the effluent discharge over multiple seasons. The samples were analyzed for 218 lipophilic contaminants, including pesticides and their metabolites, polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and polybrominated diphenyl ethers (PBDEs) and other flame retardants. Some PAHs, pesticides and their metabolites, PCBs, PBDEs and other flame retardants were measured in mottled sculpin (11 analytes) and brown trout (17 analytes). Hexachlorobenzene (HCB), p,p'-DDE, BDE-47 and triphenyl phosphate (TPHP) were the most frequently detected contaminants in mottled sculpin and brown trout, while BDE-47 and p,p'-DDE were measured at the highest concentrations, reaching up to 73 and 19 ng/g wet weight, respectively. Our results indicated that snowmelt did not alter accumulation of the examined lipophilic contaminants, and no consistent seasonal differences were observed in their accumulation. A spatial pattern was observed for PBDE congeners, where lowest levels were measured in fish tissues from a reference site, and highest concentrations were measured in fish collected downstream of the effluent discharge, indicating that municipal effluent discharge contributes to the elevated PBDE levels in fish residing in this effluent-dominated stream. We further calculated screening level consumption risks following United States Environmental Protection Agency (EPA) methods, and identified the importance of considering discharge gradients in effluent-dominated systems during bioaccumulation assessments.


Assuntos
Retardadores de Chama/análise , Bifenilos Policlorados/análise , Compostos Orgânicos Voláteis , Poluentes Químicos da Água/análise , Animais , Monitoramento Ambiental , Éteres Difenil Halogenados/análise , Estações do Ano , Utah
17.
Environ Sci Technol ; 54(16): 10207-10216, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32662267

RESUMO

Per- and polyfluoroalkyl substances (PFAS) and melamine (MEL)-based compounds are used in textile finishing as grease, stain, and water repellents. Here, we investigated the occurrence of a large suite of PFAS and MEL compounds in 86 infant clothing items. The ∑MEL concentrations ranged from below the method detection limit to 250,000 ng/g with a median concentration of 78.2 ng/g, significantly higher (p < 0.05) than the ∑PFAS levels (1.22-203 ng/g; median 3.62 ng/g). MEL and its derivatives were most abundant in nylon clothes (median 32,800 ng/g), followed by organic cotton (median 6120 ng/g). In a simulated laundering experiment, the ∑MEL concentrations in clothing decreased on an average by ∼60 and 90% when washed in cool (20 °C) and warm (50 °C) water, respectively. This removal rate increased to 97% when the samples were washed with a detergent. The estimated daily intakes of MEL and PFAS through dermal absorption from nylon clothes were three orders of magnitude higher than those from the non-nylon clothes and decreased by more than half for washed clothes. Our findings demonstrate that MEL-based compounds are abundant in infant clothing and suggest that this group of compounds could be used as potential PFAS replacements in textile finishing.


Assuntos
Fluorocarbonos , Vestuário , Fluorocarbonos/análise , Humanos , Lactente , Têxteis , Triazinas
18.
Environ Sci Technol ; 54(9): 5400-5408, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32289228

RESUMO

Organophosphate esters (OPEs) were measured in atmospheric vapor and particle samples collected at six sites in the Laurentian Great Lakes basin every 12 days from January to December 2017 (inclusive). Median total OPE concentrations (∑OPEs) ranged from 41.2 pg/m3 at Eagle Harbor, Michigan to 1320 pg/m3 at Cleveland, Ohio. Tris(1-chloro-2-propyl) phosphate (TCIPP) was the most abundant OPE measured in these samples and contributed 26% to ∑OPE concentrations. The spatial distribution of OPEs among the sites suggests that OPEs with longer atmospheric half-lives and relatively high octanol-air partitioning coefficients (KOA) are likely to have a greater potential to undergo long-range atmospheric transport. OPE particle-phase partitioning fraction (Φ) significantly and positively correlated with KOA, but declined with increasing relative humidity. Φ values varied seasonally and were lower in the summer for volatile OPEs. In addition, samples collected in the summer had significantly higher levels of ∑OPEs than samples collected in the winter. The estimated dry deposition flow of ∑OPEs to the Great Lakes was 1.22 tons/year, exceeding the corresponding flows reported for polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and organochlorine pesticides (OCPs).


Assuntos
Retardadores de Chama/análise , Lagos , Atmosfera , Monitoramento Ambiental , Ésteres , Michigan , Ohio , Organofosfatos
19.
Environ Pollut ; 259: 113872, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32069693

RESUMO

The Arctic is subject to long-range atmospheric deposition of globally-distilled semi-volatile organic compounds (SVOCs) that bioaccumulate and biomagnify in lipid-rich food webs. In addition, locally contaminated sites may also contribute SVOCs to the arctic environment. Specifically, Alaska has hundreds of formerly used defense (FUD) sites, many of which are co-located with Alaska Native villages in remote parts of the state. The purpose of this study was to investigate the extent of SVOC contamination on Alaska's St. Lawrence Island through the analysis of sentinel fish, the ninespine stickleback (Pungitius pungitius), collected from Troutman Lake located within the watershed of an FUD site and adjacent to the Yupik community of Gambell. We measured the concentrations of legacy and emerging SVOCs in 303 fish samples (81 composites), including polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), organophosphate esters (OPEs) and their diester metabolites, and per- and poly-fluoroalkyl substances (PFAS). PBDEs and PCBs were the most abundant SVOC groups found in stickleback with ΣPBDE and ΣPCB median concentrations of 25.8 and 10.9 ng/g ww, respectively, followed by PFAS (median ΣPFAS 7.22 ng/g ww). ΣOPE and ΣOPE metabolite concentrations were lower with median concentrations of 4.97 and 1.18 ng/g ww, respectively. Chemical patterns and distributions based on correlations and comparison with SVOC concentrations in stickleback from other parts of the island suggest strong local sources of PCBs, PBDEs, and PFAS on St. Lawrence Island.


Assuntos
Monitoramento Ambiental , Peixes , Compostos Orgânicos Voláteis , Poluentes Químicos da Água , Alaska , Animais , Regiões Árticas , Ilhas , Militares , Compostos Orgânicos Voláteis/análise , Poluentes Químicos da Água/análise
20.
Chemosphere ; 244: 125505, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32050329

RESUMO

Melamine (MEL) and its derivatives are widely used in many consumer products, including furniture, kitchenware, and plastics. However, very limited knowledge exists on human exposure to MEL and its derivatives, especially in the indoor environment. Here, we determined the occurrence and distribution of 11 MEL derivatives in childcare facilities and estimated children's exposure through dust ingestion and dermal absorption. We analyzed dust and samples of nap mats, a commonly used item in many childcares, from eight facilities located in the United States. Eight MEL-based compounds were detected in dust, and total MEL concentrations ranged from 429 to 117,000 ng/g. The most abundant compounds found in the dust samples were MEL, cyanuric acid (CYA), ammeline (AMN), and ammelide (AMD), with median concentrations of 1620, 585, 1060, and 299 ng/g, respectively. MEL, CYA, AMN and 2,4,6-tris[bis(methoxymethyl)amino]-1,3,5-triazine (TBMMAT) were also detected in nap mats with median concentrations of 45.6, 19.8, 1510 and 2.5 ng/g, respectively. ΣMEL concentrations in mat covers (median 709 ng/g) were significantly higher than those in mat foam (median 15.1 ng/g). Estimated daily intakes (EDIs) of MEL and its derivatives via dust ingestion were two orders of magnitude higher than the EDIs through dermal absorption, but both were below the established tolerable daily intake levels. This is the first report on exposure to MEL and its derivatives in the childcare environment.


Assuntos
Creches/normas , Exposição Ambiental/análise , Triazinas/farmacologia , Poluição do Ar em Ambientes Fechados/análise , Criança , Poeira/análise , Humanos , Absorção Cutânea , Triazinas/análise , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA